
Spam and the Ongoing Battle for Safe Communications

Frank S. Rietta

Peachtree Communication Systems, Inc.
frank@peachtreecommunication.net

Abstract
Managing spam is an increasingly critical function
for businesses of all sizes. According to the Febru-
ary, 2007, issue of the Communications of the ACM,
the overall volume of spam has increased from 10%,
in 1998, to 80%, today [1]. The onslaught of spam sig-
nificantly degrades the reliability of e-mail for business
communication. Many web sites provide web-based
e-mail forms instead of listing e-mail addresses. Spam-
mers and phishers have been using increasingly sophis-
ticated techniques to attack these forms. These adver-
saries use Google to locate vulnerable web sites [5,
page 104] and then use botnets[3] to attack them. In or-
der to effectively fight spam, it is important to use mul-
tiple tools. This paper examines the overall threat fac-
ing every blogger, web site operator, and e-mail user.

1. Introduction to Spam and Various
Countermeasures

1.1 Overview
Spam is a big problem that causes significant grief to
millions of internet users. Since it first became a ma-
jor problem in 1997, e-mail based spam has mutated
many times in an ever-increasing arms race between
spammers and anti-spammers [1]. Spam has tradition-
ally been associated with Unsolicited Bulk Commercial
E-mail (UBCE), but the problem is not limited to e-
mail. Instant messaging systems have IM Spam (SPIM)
[1], chat rooms have SPAT, voice over ip systems
have SPIT[7], search engines have spamdexing[8], and

Software Industry Conference 2007 July 12-14, Denver, Colorado.
Copyright c© 2007 Frank S. Rietta

blogs have it too. It is cheap to send and profitable[6].
It is important for business owner to take reasonable
measures to reduce the detrimental effect, but one must
be diligent to avoid entanglement in the search for the
final ultimate solution to the spam problem [4].

This paper reviews some of the techniques in com-
mon usage to fight e-mail spam. It then introduces a
Security-Enhanced Contact Form (SECF) and a few of
its countermeasures. Finally, it discusses observations
on spambot interaction with SECF and evidence of bot-
net activity.

1.2 Rule-Based, Machine Learning, and
Collaborative Filtering

To fight e-mail spam, systems that implement a combi-
nation of rule-based, machine learning, and collabora-
tive filtering are quite effective. This class of system
is represented by Apache’s Spam-Assassin, a freely
available open-source hybrid spam filter. It uses many
regular-expression-based signatures of spam character-
istics, combined with a simple baysian model trained
on both good mail and bad mail, and supports net-
work checks. The supported network checks include
checking various DNS block lists and CloudMark’s
SpamNet (formerly known as Vipul’s Razor). While
baysian filtering has been around for a while, emerg-
ing techniques may perform even better. For instance,
compression-oriented algorithms have made use of Dy-
namic Markov Coding and Prediction by Partial Match-
ing techniques to detect spam in an encoding-agnostic
way [1]. These models may prove to be resilient against
many spammer tricks used to bypass filters through ob-
fuscation.

1.3 Human-Solvable Puzzles
Completely automated public turing tests to tell com-
puters and humans apart (captchas) are human-solvable
puzzles that authenticate a web site visitor as human

rather than machine [2, 1]. The most familiar form is a
difficult to read image that must be transcribed at nearly
all major web sites. Captchas are typically classified
as gimpy, bongo, pix, sound, baffle text, or pessimal
print [2]. Good captchas have published source code
available for peer-review, like good cryptography, and
are currently effective against most automated attacks.
They are also very unfriendly to human users who may
have difficulty reading the puzzles.

2. A Security-Enhanced Contact Form
(SECF)

Around 2002, I removed all text e-mail addresses from
my web site to prevent spam. For customers to contact
me via e-mail, I implemented a simple PHP web form
that took the input, formatted it, and e-mailed it the my
contact address. The contact e-mail address was only
listed in the source code to prevent spam harvesters
from picking it up. As an additional benefit to my
customers, I had the script generate a text message
(SMS) to my mobile phone if a phone number was left.
This allowed me to easily provide a call back within
a few minutes even when I was away from my home
office or computer.

The simple form stopped all spam for a few years
and then the attacks began. With each new attack, I
improved the security of the script. Below is a summary
of broad changes made to keep up with the increasingly
complex spambot behavior:

• 2002: Validate, via RegEx, that a single well-formed
e-mail address is provided.

• 2005: Strip fields, other than the body, of any con-
tent following the first line.

• 2006: Reduce SMS problems by normalizing phone
numbers and throwing out invalid ones.

• 2007: Tar-pit bogus submissions to slow down the
spammer networks.

The current iteration of the SECF implements sev-
eral features to defend against automated spammers.
Figure 1 shows how submission data flows through the
form handler. The core design requirement has been to
avoid introducing any burden on a human visitor while
making it very difficult for spambots. For this reason,
the system does not implement a captcha, but instead
relies on randomized field names and trap fields. Be-
cause a contact form contains several fields, strict input

Figure 1. The data flow through SECF.php, a spam-
hostile HTML contact form that uses strict input vali-
dation, randomized field names, and trap fields.

An HTML
Form is

Submitted

Map
 Random Field

Names to Proper
Variables

Log and
Tarpit

Any Trap
Fields Filled?

E-Mail
Valid?

Normalize the
Phone Number

Phone
Number
Valid?

Strip Data

Deliver E-mail
and SMS

Deliver E-Mail

No

Yes

No

Yes

validation greatly reduces the attack surface. See figure
2 for some of the PHP functions used to validate input,
strip spurious input, and tar-pit the spambots.

2.1 Security Features
No single security feature is sufficient to consistently
identify spam submissions without throwing out too
many valid submissions. Therefore, SECF implements
several smaller metrics and throws out a message only
if certain exceptions are triggered. When the message
is thrown out it is logged and the request connection is
sent to the tar pit function.

2.1.1 Strict Validation for all Input
The programmer must remember to A.R.M. the pro-
gram against attack. That is, when writing applications,
validate all input strings. There are three, and only
three, options when given a piece of data:

• Accept it!
• Reject it!
• Modify it!

It might seem obvious that all input must be vali-
dated. Too often, webmasters and programmers are fo-

Figure 2. Strictly validating all user-supplied input is
important. These PHP functions cut out the junk.

function isEmailValid($email) {
return eregi(

"^[a-z0-9\._-]+@+[a-z0-9\._-]"
+ "+\.+[a-z]{2,3}$",

$email
);

} // end isEmailValid

function oneLine($data) {
$lines = explode("\n", $data);
return $lines[0];

} // end oneLine

function delaySpammer () {
// Delay between 5 and 35 seconds
sleep(rand(5, 35));
// Send the spambot to its localhost!
header("Location: http://127.0.0.1/");
exit(1);

} // end delaySpammer

cused on getting a working application under time pres-
sure and may not implement the best security practices.
SECF validates its input. If a field contains unexpected
content and error is thrown and no message is deliv-
ered. See 2 for the code used to ensure that a single,
correctly-formed e-mail address is provided.

2.1.2 Submission Delay
A UNIX time-stamp is generated, and stored in a hid-
den field, when the HTML form is initially fetched.
When the submission arrives, the number of seconds
between the fetch time and submission time is com-
puted. Some spam messages had a delay of only 1 or
2 seconds, but others were delayed for 30 seconds or
more. The submission delay is not a reasonable filter
by itself, but helps serve as an additional data point. A
duplicate fetch time indicates out-of-band distributed
of cached copies. Submission delays of up to 11.2 days
have been also been logged. Table 3.2 shows how a
cached copy is shared among multiple IP addresses, in-
dicating a botnet-based spam network.

2.1.3 Randomized Field Names and Trap Fields
My historical data shows that spambots spoof the user
agent field of the popular Internet Explorer, FireFox,

and Opera web browsers. The bot typically downloads
the HTML and fills out the form fields using a simple
fuzzy matching algorithm. It puts a name in a field that
is called something like “Name”, an e-mail in a field
similar to “Email”, a number in a field that is similar
to “Phone”, etc. It will typically place the body of its
message in any field that it does not recognize.

SECF uses randomized field names in place of nor-
mal ones. For example, the “Name” field may really
be “oonJif24x1”, the “Email” field really “osdn323xs”,
etc. The handler script maps these random fields to the
proper variables and validation continues as always.
The fields were manually, statically randomized in the
current iteration and that has been sufficient to prevent
most spam engines because the data supplied to the e-
mail field does not pass data validation.

Going one step further, SECF deploys hidden trap
fields. The current generation of spambots do not
all distinguish between hidden and visible fields and
will place content in the trap fields entitled “Name”,
“Email”, “Subject”, and “Message”. Any submission
with content in any trap field is immediately logged
and tar-pitted. See figure 1 for a summary of the sub-
mission handler process.

2.1.4 Log and Tar-pit
Starting at the end of March, 2007, SECF logs all re-
jected messages in a database and tar-pits the spam-
mer’s socket connection for a random period of time.
Recall that a message is rejected outright only when
any of the trap fields contains data. This is a protection
against triggering a tar-pit against a visitor who might
have simply entered a bad e-mail address. The resulting
data is the basis for the discussion on spambot behav-
ior.

3. Observed SpamBot Behavior
3.1 Before Trap Fields
Throughout the second half of 2006 spams were hitting
the contact form multiple times per day from various IP
addresses with highly similar content. The user-agents
were consistently spoofed as Internet Explorer, Firefox,
and Opera. The submission delays ranged from 1 sec-
ond to 32 seconds. Randomized field names were im-
plemented in SECF in early January 2007, completely
stopping the spamming that had been getting through.
No spam was delivered through the form and there was
no known case of a human visitor being rejected.

Table 1. Below is the log evidence of suspected
botnet-based spamming activity. Multiple IP addresses,
from three Regional Internet Registries shared a single
HTML form that was fetched on March 25, 2007.

Date Delay (Days) RIR
2007-03-26 0.9 ARIN
2007-03-27 2.02 RIPE
2007-03-28 2.89 RIPE
2007-03-29 4.03 RIPE
2007-03-29 4.03 ARIN
2007-04-01 6.78 ARIN
2007-04-02 7.97 ARIN
2007-04-05 10.93 APNIC
2007-04-05 11.21 ARIN

3.2 After Trap Fields
The trap fields were implemented on March 8, 2007.
Eighteen distinct trapped messages were logged be-
tween March 18, 2007, and April 29, 2007. These mes-
sages were delivered by fourteen distinct IP addresses
such that one IP address delivered nine messages, an-
other delivered two messages, and the remainder each
came from various IP addresses. Among the messages,
only eight unique fetch times were present.

It is highly likely that a small botnet, or a leased por-
tion of a larger botnet, is being used to deliver these
spam messages. A single cached time-stamp, that rep-
resents a moment in time down the the second, is be-
ing shared among a bunch of unique IP addresses from
different regional internet registries (RIR). Table 3.2
shows the data for trapped messages received that were
all based on a single, cached copy that was fetched on
Sunday, March 25, 2007 at 20:37:15 GMT.

4. Conclusion
Placing a custom-designed e-mail form on a web site
is no longer sufficient to protect against inbound spam.
The spammers are using sophisticated crawlers to lo-
cate and reverse HTML forms. The purpose is to spam
the particular operator of a particular web site. This is
a break from the past where spammers only went af-
ter broadly deployed commercial and open-source soft-
ware. I have shown that cached copies of the reversed
forms are even being distributed among multiple botnet
nodes. Those nodes independently submit form spam

to the target over multiple days without fetching a new
copy of the form.

All web sites are adversarial environments and must
be treated as such in the design, development, and
implementation of all dynamic systems. Those tasked
with hardening web forms should consider the vari-
ous techniques available. In some instances, random-
ized field names and trap fields may work as well as
traditional captchas against automated attacks for the
present time.

References
[1] Joshua Goodman, Gordon V. Cormack, and David

Heckerman. Spam and the ongoing battle for the inbox.
Commun. ACM, 50(2):24–33, 2007.

[2] Clark Pope and Khushpreet Kaur. Is it human or
computer? defending e-commerce with captchas. IT
Professional, 7(2):43–49, 2005.

[3] Anirudh Ramachandran and Nick Feamster. Under-
standing the network-level behavior of spammers. In
SIGCOMM ’06: Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 291–302, New
York, NY, USA, 2006. ACM Press.

[4] V J S. You might be an anti-spam kook if... http:
//www.rhyolite.com/anti-spam/you-might-be.
html, Nov 26 2006.

[5] Joel Scambray, Mike Shema, and Caleb Sima. Hacking
Exposed Web Applications, Second Edition (Hacking
Exposed). McGraw-Hill Osborne Media, 2006.

[6] Bruce Schneier. Crypto-gram newsletter: The eco-
nomics of spam. http://www.schneier.com/
crypto-gram-0402.html#9, Feb 15 2004.

[7] Bruce Schneier. Schneier on security: Combat-
ing spam. http://www.schneier.com/blog/
archives/2005/05/combating spam.html, May
13 2005.

[8] Tanguy Urvoy, Thomas Lavergne, and Pascal Filoche.
Tracking web spam with hidden style similarity. In
Proceedings of the Second International Workshop
on Adversarial Information Retrieval on the Web -
AIRWeb 2006, pages 25–31, Seattle, WA, USA, 2006.
Department of Computer Science and Engineering,
Lehigh University.

http://www.rhyolite.com/anti-spam/you-might-be.html
http://www.rhyolite.com/anti-spam/you-might-be.html
http://www.rhyolite.com/anti-spam/you-might-be.html
http://www.schneier.com/crypto-gram-0402.html#9
http://www.schneier.com/crypto-gram-0402.html#9
http://www.schneier.com/blog/archives/2005/05/combating_spam.html
http://www.schneier.com/blog/archives/2005/05/combating_spam.html

	Introduction to Spam and Various Countermeasures
	Overview
	Rule-Based, Machine Learning, and Collaborative Filtering
	Human-Solvable Puzzles

	A Security-Enhanced Contact Form (SECF)
	Security Features
	Strict Validation for all Input
	Submission Delay
	Randomized Field Names and Trap Fields
	Log and Tar-pit

	Observed SpamBot Behavior
	Before Trap Fields
	After Trap Fields

	Conclusion

