Firefox Extension Development
Tutorial :: Configuration Files

Table of contents

@Y= VT S
2 INStAl MANITESL.......ccuieeceece et e e sr e e e e nreeeeenes
I 010 0T USSP
4 ChromME MaNITESL.......ociie et ste e s e e ae e s reeereesreeenneennes
Sl U1 0Tc (== 0 1 oo PRSI

Firefox Extension Development Tutorial :: Configuration Files

1. Overview

A Firefox Extension is a collection of files and folders that have been compressed into afile
with a.xpi extension. The .xpi file (pronounced zippy) is nothing more than a .zip file that
has been renamed.

Create afolder (wherever you feel most comfortable, such as the Desktop) named 'MyEXxt'.
Truthfully, the name of thisfolder isup to you, but | will refer to it as'MyEXxt' throughout
this tutorial. Within this folder you will need to create the following directories:

My Ext /
chr one/
chrone/ chroneFi | es/
chrone/ chroneFi | es/ cont ent/
def aul t s/
def aul t s/ pr ef erences/

These directories will remain empty for now. There are two text files that you will need to
create at the root of the MyExt folder. These files are configuration files that provide
information to the Firefox extension framework. Each of these are described below.

Alternatively, you may download a MyEXxt.zip file that already contains the empty
directories.

2. Install Manifest

An Install Manifest is the file used to provide information about a Firefox addon (extension,
plugin, component, ..) whileit is being installed. The file contains metadata identifying the
addon, providing information about who created it, where more information can be found
about it, which applications and versions it is compatible with, and more.

To create your Install Manifest, create atext file called 'install.rdf* and place it in the root of
your MyEXxt directory (i.e. MyExt/install.rdf). Paste the following information into thisfile:

<?xm version="1.0"?>
<RDF xm ns="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: em="http://ww. nozi | | a. or g/ 2004/ em r df #" >

<Descri pti on about ="urn: nmozilla:install-pmanifest">
<em i d>sanpl e@anpl e. conx/ em i d>
<em ver si on>1. 0</ em ver si on>
<em type>2</emtype>

<l-- Target Application this extension can install into,
Wi th m ni rum and nmaxi num supported versions. -->

Page 2

../MyExt.zip

Firefox Extension Development Tutorial :: Configuration Files

<em t ar get Appl i cati on>
<Descri pti on>
<em i d>{ ec8030f 7- c20a- 464f - 9b0e- 13a3a9e97384} </ em i d>
<em m nVer si on>1. 5</ em m nVer si on>
<em maxVer si on>1. 5</ em maxVer si on>
</ Descri ption>
</ em target Appl i cati on>

<l-- Front End MetaData -->
<em nanme>My Extensi on</em name>
<em descri pti on>A sanpl e extensi on. </ em descri pti on>
<em cr eat or >Your Nane Here</em creat or >
<em honmepageURL>ht t p: / / www. mypage. coni </ em honmepageURL>
</ Descri pti on>
</ RDF>
At this time you should modify this generic information to match your needs. Hereisa

breakdown of the first section:

1. id: Thisisthisvaue which uniquely identifies your extension. This D should simply be
your email address. This ensures that the ID will be different than those of other
extensions. It is possible to use a GUID as well, but thisis no longer necessary or
recommended.

2. version: Thisstring identifies the version of the extension being installed. The version
number is completely up to you, however it is recommended that you use versions less
than 1.0 when in development stages. When you feel confident your extension works
well, you may make the version be 1.0. Future improvements should increase the version
number as appropriate. For Firefox 1.5, aversion string consists of one or more version
sections, separated with dots. Each version section is a sequence of four parts:
<number-a><string-b><number-c><string-d>, where each of the partsis optional.
Numbers are integers base 10, and strings are ASCII. Example: 1b2a.

3. type: Thisinteger value represents the type of addon being installed. For an extension,
this number should always be 2.

The targetApplication section defines which application is targeted by this extension. The
<em:id> field defines which application your addon is created for, and is currently set to
Firefox in the samplefile. Thistutorial only provides Firefox details, so this GUID should
remain constant.

The <em:minVersion> and <em:maxV ersion> fields simply tell Firefox which versions of
Firefox the extension is designed for. These values will be compared to the value of the
app.extensions.version preference and can be different from the actual version of Firefox
(yes, it isannoying). For example, Firefox versions 1.0 - 1.0.6 all have
app.extensions.version of 1.0.

The last section of data describes your extension:

1. name: Thisline simply defines the name of your extension and is intended for display in
the Ul of Firefox.

Page 3

Firefox Extension Development Tutorial :: Configuration Files

2. description: Thisline should describe the functionality of your extension and is intended
to be displayed in the Ul. It should fit on oneline in order to display properly in the user
interface.

3. creator: Thisline should contain your name and will be used to display your namein the
Ul.

4. homepageURL: Thislineisoptional and issimply just alink to the author's homepage. If
you have a personal homepage that you would like to reference, put it here.

3. Chrome

Before we talk about the Chrome Manifest file we must learn what 'chrome’ means. Chrome
isthe term used to refer to Interface Packages created for Firefox. The Firefox browser
contains a component, the Chrome Manager, that handles the install ation and loading of the
various parts of Firefox. Everything from the guts (global, browser, etc.) to extensions (such
asyours!) register themselves with this manager.

Chrome uses URIsjust like you are used to on the web (http). However, in order for Firefox
to know it is working with a chrome package, the ‘chrome’ prefix is used (instead of http).
For example, there is a built-in package called 'browser'. This package can be referenced as
‘chrome://browser".

Let'slook at the browser package a little more. This Chrome package, much like your
extension will, provides User Interface and backend code for Firefox. We can inspect the
browser package's primary User Interface file: browser.xul. Open up your DOM Inspector
and type 'chrome://browser/content/browser.xul’ into the location bar. Now press the inspect
button (enter will not work). From the View menu make sure that 'Browser' is checked. You
can see here what 1ooks exactly like your browser! That is because you have loaded the
layout file (inside the Browser Chrome package) and are currently inspecting it.

4. Chrome M anifest

As we proceed through the tutorial you will add many lines to the chrome.manifest file
located at the root of the MyExt directory. For now, we will add one line that tells Firefox
where to find the content needed to display and execute your extension:

cont ent sanpl e chrone/ chroneFi | es/ cont ent/

Thisline saysthat for the chrome package named 'sampl€', Firefox can find the content files
at the location chrome/chromeFiles/content which is a path relative to the location of
chrome.manifest (you created this directory above).

At this time you should come up with a unique package name for your extension (instead of

Page 4

Firefox Extension Development Tutorial :: Configuration Files

‘'sample’). For the Home Page Scheduler extension we used 'hpsched'. In the next few steps
we will create the actual content that Firefox will be looking for.

5. Further Reading

Install Manifest Details: http://developer.mozilla.org/en/docs/Install M anifests
Chrome Manifest Details: http://devel oper.mozilla.org/en/docs/Chrome Manifest
All About Chrome: http://www.mozill a.org/xpfe/ ConfigChromeSpec.html

Page 5

http://developer.mozilla.org/en/docs/Install_Manifests
http://developer.mozilla.org/en/docs/Chrome_Manifest
http://www.mozilla.org/xpfe/ConfigChromeSpec.html

	1 Overview
	2 Install Manifest
	3 Chrome
	4 Chrome Manifest
	5 Further Reading

