Application Layer Intrusion Detection for SQL Injection

Frank S. Rietta
10630 Greenock Way
Duluth, Georgia 30097

frank@rietta.com

ABSTRACT

SQL injection attacks potentially affect all applications, es-
pecially web applications, that utilize a database backend.
While these attacks are generally against the applications
and not the database directly, there are some techniques that
can be deployed to mitigate the risk at the database server.
Database intrusion detection systems are often based on sig-
natures of known exploits and honey tokens, traps set in the
database. This paper examines the threat from SQL injec-
tion attacks, the reasons traditional database access control
is not sufficient to stop them, and some of the techniques
used to detect them. Moreover, it proposes a model for an
anomalous SQL detector which observes the database traf-
fic from the perspective of the database server itself. The
proposed anomaly model can be used in conjunction with
the existing methods to give the database server a way to
mitigate the SQL injection risk that is a major application
security problem.

Keywords

SQL injection, database security, anomaly detection

1. INTRODUCTION
1.1 Motivation

Web applications are becoming increasingly commonplace
and accessible. Often the developers of these programs are
focused on getting a working application under time pres-
sure and may not implement the best security practices.
Many applications are developed with loosely-typed script-
ing languages and make use of a single database user with
full permissions, a so-called “god” user. The lack of strong
types and invalidated database access control make for an
increased risk of SQL injection vulnerabilities unless the pro-
grammer maintains the habit of strictly validating all input.
This paper is a consolidated overview of the problem and

Permission to make digital or hard copies of all or part of this work for

some methods to mitigate the risks. In Section 1.2 we de-
scribe why SQL Injection is an important security threat,
Section 1.3 explains Intrusion Detection techniques; Section
2 describes the Security and Control problems in databases;
Sections 3 and 4 discuss Methods of Security in databases;
Section 5 is devoted to common SQL injection attack tech-
niques; and Section 6 will introduce our anomaly detection
model for SQL injection.

1.2 SQL Injection

SQL injection is a technique often used to exploit data-
base systems through vulnerable web applications [7]. The
technique allows the attacker to not only steal the entire
contents of relational databases but also, in many cases, to
make arbitrary changes to both the database schema and the
contents. Relational database server products have no mech-
anism to deal with SQL injection as the problem is rooted
not in the database server itself but in vulnerable applica-
tions with excessive privileges granted to users. In most
cases, a victim of an SQL injection attack does not even
know that information is compromised until long after the
attack has passed. Perhaps he may receive an angry e-mail
from a customer who found his credit card number stolen or
from the attacker himself seeking some form of blackmail.
In many instances, victims are unaware that their confiden-
tial data has been stolen or compromised. While the details
of SQL injection attacks vary among implementations of re-
lational database systems (RDBMS), both commercial and
open source RDBMSs are potentially susceptible to attack.

Most SQL injection attacks are executed through an appli-
cation that takes user-supplied input for query parameters.
The attacker supplies a carefully crafted string to form a
new query with results very different from what the appli-
cation developer intended. For example, consider a script
on a web site that takes a search parameter like Zipcode to
return selected results from a database. A very simple at-
tack may be possible by simply providing something, like “1
OR 1=1” in the text field, which causes the SQL server to
return all records from a particular table. An attacker can
often gain access to anything available with the script’s priv-
ileges, which is often full access to one or more databases.

personal or classroom use is granted without fee provided that copies are While SQL injection attacks could be executed against
not made or distributed for profit or commercial advantage and that copies any application, web applications are the most commonly
bear this notice and the full citation on the first page. To copy otherwise, t0 yylnerable. The attacker can easily explore a site for vul-
republish, to post on servers or to redistribute to lists, requires prior specific nerabilities without being caught or having to work through
permission and/or a fee.

sophisticated network intrusion techniques as most prospec-

ACM SE’06March 10-12, 2006, Melbourne, Florida, USA) . > o . R
Copyright 2006 ACM 1-59593-315-8/06/000435.00. tive targets leave their web site applications wide open. Fire-

walls and traditional network intrusion detection systems are
useless against SQL injection since it is an application ex-
ploit that in most cases is indistinguishable from expected
use. Some signature-based detection systems have been de-
veloped for web servers to protect vulnerable scripts from
malicious input. However, these signature-based systems are
inherently susceptible to evasion methods that take advan-
tage of the expressiveness of the SQL language or alternate
character encodings. Remarkably, writing scripts that are
not vulnerable to SQL injection is as simple as passing all
user-provided text through a string escaping function prior
to use as a parameter in an SQL statement. As past experi-
ence has shown, vulnerable scripts are everywhere.

SQL injection affects every database on every platform.
Attacks can be used to gain information disclosure, to bypass
authentication mechanisms, to modify the database, and, in
some cases, to execute arbitrary code on the database server
itself! This paper will examine ways to build an intrusion
detection system specifically designed to be situated at the
database server level to detect SQL injection attacks.

1.3 Intrusion Detection

Intrusion detection systems (IDS) are similar to burglar
alarms that reside on the network to look for suspicious ac-
tivity and alert the system and network administrators that
there is a break-in. In practice, intrusion detection systems
achieve varying degrees of success, and in many cases a clever
intruder can evade detection. Those who decide to employ
such systems must take into account the amount of noise in
the system [3], the false positive and false negative rates.

In general, all intrusion detection systems are based either
on signatures or anomaly models. A signature-based system
must know explicitly about an exploit or an attack before
it can be detected [5]. In order to be effective, the signa-
ture database must be constantly updated, sometimes by a
subscription service, and in general can only offer protection
against the most basic attacks. Unlike the signature-based
system, which looks for known bad input, an anomaly-based
system builds a profile of what is expected to be seen and
alerts on any input which is outside of the profile. Generally,
an anomaly-based IDS is a bi-modal system with a training
mode and detection mode. While these systems can some-
times be trained as the system evolves, there are statistical
methods for evading the system.

A networked IDS may have one or more observation points,
usually called sensors, on the network. Generally, a sensor
may be placed at the firewall or gateway into the network
and will often be physically connected to the monitoring port
of a primary network switch. This network layer sensor gen-
erally may have rules for particular protocols and will use
packet inspection to look for suspicious activity. However,
IDS sensors are not restricted to the network layer, and in
some cases it will be useful to place a sensor at the applica-
tion layer. This higher level sensor is located either within a
particular server, such as a database server, or on a proxy in
front of the server. This application layer sensor should have
specific domain knowledge for the application protocol and
does not have to deal with multiple levels of encapsulation
and encoding that would be present at the network layer.

An ideal solution is to create an IDS sensor to be situ-
ated at the database server that will detect SQL injection
attacks. As will be discussed, this sensor would be specifi-

cally designed to inspect SQL statements. Generic network
intrusion detection systems are encumbered by encryption,
multiple levels of encoding, and other encapsulation. By
placing this IDS sensor on a database server proxy, it has
access to the entire context of the SQL stream.

2. PROBLEMS WITH DATABASE ACCESS
CONTROL AT LARGE

One important topic of consideration is why the standard
database management system access control mechanisms are
ineffective at stopping most SQL injection attacks. While
some database management systems provide role-based au-
thentication, most use basic user-based authentication mech-
anisms. Many simple database-driven applications do not
have a sense of a traditional user and instead use a single
database login which is used by all instances of the appli-
cation. For many web site applications, this means that a
single user has all privileges to a particular database so any
injection against that application cannot be contained by the
database’s internal access control mechanisms. While more
advanced applications could benefit from role-based access
control, they often instead have a single database user and
implement their own authentication methods. In both of
these cases, the database has no way to mitigate access by
an exploit to the application.

It would be better if application developers took advan-
tage of the database server’s user authentication mechanisms
instead of rolling their own solution, but that is often not
the case. When the database server and application make
use of a non-integrated view of the users, there is a major
opportunity for security exploits.

The use of a “god” user by most web applications presents
a significant dilemma for database security for these appli-
cations. While the best long term solution is to fix the appli-
cations to take advantage of database authentication mecha-
nisms in order to mitigate potential security threats, in many
organizations it may be possible to deploy some additional
functions at the database server level. For example, a pro-
gram could monitor SQL traffic from an application for a
period of time and then construct a set of least privileges for
each query generated. The database proxy server could then
maintain a pool of query-based access control privileges and
ensure that no query is executed with more access privileges
than required to execute.

3. RELIABILITY, SECURITY AND
TRUST IN DATABASE SYSTEMS

According to Viega and McGraw, “Security boils down
to enforcing a policy that describes rules for accessing re-
sources” |9, page 14]. It is tempting to look at security as
the same thing as reliability, and it is partially so. One way
to look at reliability is as a measurement of how robust a
system is with respect to software failures due to bugs. The
definition of a bug can be looked at as a security policy [9].

There are a number of aspects, see figure 1, which come
into play in the design and implementation of a database
and its surrounding systems and all take part in the overall
reliability of the system. The aspects of security, includ-
ing data integrity, strong authentication, code integrity, and
access control are all also part of reliability. However, effi-

Figure 1: Security is a subset of reliabi_lity.
' Reliability

Security . | Efficiency |
| /Data & Code \ “Strong |
. Integrity "\ Auth.

[!ﬂu:cess Ctll._)

_ (Availability|

ciency is not part of security. Availability is a special case
that overlaps the two depending on the system.

Much of the work in database management systems has fo-
cused on robustness in terms of performance and basic secu-
rity such as authentication, access control, and flow control.
Many of these areas overlap and are all part of a reliable
database system. However, if one just looks at reliability,
it is sometimes easy to overlook some of the finer details of
security. While access control may be in place, the database
system will intrinsically trust the authenticated user. The
biggest problem related to database security is trust man-
agement. Questions as to how much trust can be placed on
an authenticated user is key. Best practices must be defined
in such a way as to be automatically enforced.

4. DATABASE SECURITY METHODS

Database and information security often goes beyond the
basics of access control mechanisms. Generally, all methods
for intrusion detection fall either into the signature-based
or into the anomaly-based categories. The main difference
between these approaches is that a signature-based system
looks for known things to block while an anomaly-based sys-
tem learns what normal behavior looks like over time and
detects things that do not fit the normal profile. There are
commercial and home-grown database intrusion detection
systems used today that basically employ three methods:
signatures, honey tokens, and anomaly models.

4.1 Signatures

The classic signature-based detection system maintains
a list of known attacks and is usually deployed as part of
the web application instead of being placed in front of the
database server. A signature may be as simple as a regu-
lar expression describing a particular string pattern, such as
UNION SELECT, used in a known attack. The problem
with signatures is that knowledge about the exact attack
must be known ahead of time, and it is relatively easy for
the attacker to adjust the input to evade the signature. Sig-
nature evasion techniques include using different encodings,
fragmenting input across packets, changing to a different but
equivalent expression, or changing the location and usage of
white space [6]. Creative use of white space characters that
do not effect that meaning of the SQL, but can fool a simple
IDS signature is a typical evasion technique.

One instructive example of signature evasion would be if a
signature is in place to stop input such as “OR 1=1" it may

be possible to bypass this with equivalent input such as “OR
’One’ = N’One’.” Both of these comparisons are valid SQL
which will return true in all cases, the later being a string
comparison with the N data type cast being a valid part of
the SQL language.

Fragmentation techniques do not generally thwart more
advanced network IDS sensors or application level sensors.
While signature protection is widely deployed today and
will mitigate most basic attacks, it is not enough to pro-
tect against SQL injection [6]. The defender’s dilemma is
that SQL is a big language with a lot of possible variations.
It is simply impossible to build a signature list against all
possible bad inputs and their effects on all database schema.

4.2 Honey Tokens

A honey token is some type of digital entity, be it a credit
card number, a spreadsheet, a presentation, a database en-
try, or even a bogus login. Honey tokens come in many
shapes and sizes. However, they all share the same concept:
a digital or information system resource whose value lies in
the unauthorized use of that resource [8|. Honey tokens can
be easily deployed to help protect a large variety of database
systems and are particularly useful to catch internal infor-
mation and privacy violations by employees. Both credit
card and social security numbers have algorithms which can
be used to check a particular number to see if it is valid.
Invalid numbers can be attributed to certain records and an
alarm sounded if those values ever leave the database server.
Honey token based IDS sensors are flexible, easy to deploy,
and particularly useful against insider attack.

4.3 Anomaly Models

Anomaly detection models vary in both technique and ap-
plication depending on the domain being addressed. An
ideal anomaly model which detects all attacks with zero false
positives is the holy grail for an intrusion detection system,
but in practice this is not achievable. However, there are
some good models for specific areas such as SPAM detection
and network worm detection. In general, a normal profile is
created through a training mode or by incremental learning
looking either at non-exploit network traffic or for so-called
HAM messages in the case of e-mail. When in detection
mode, some distance algorithms are used to compare cur-
rent data against the normal model and any distance which
crosses some threshold is considered to be an anomaly.

5. FORMS OF SQL INJECTION ATTACKS

An SQL injection attack is, in nearly all instances, an
application exploit which takes advantage of the database
management system. While the attack affects all applica-
tions that deal with databases, the most common victims
are web applications because they are wide open to access.
The attack goes straight through any firewall protection,
which provides little or no security, and in most cases to-
tally bypasses any access control that the DBMS would have
traditionally provided.

While some attacks are easier to implement than others,
the ease of any particular attack does not imply that the
danger resulting from the attack is lessened. An analogous
example can be brought in from the study of faults: a trivial
fault in a system may have disastrous consequences while a

Figure 2: Forms of SQL Injection Attacks

Attack Type Results

Allows the attacker to trick the ap-
plication in order to obtain from
the database information that is not
supposed to be returned or is not al-
lowed to be seen by this user.
Allows the attacker to access the
database-driven application and ob-
serve data from the database with-
out presenting proper credentials.
Allows the attacker to insert, mod-
ify, or destroy data content without
authorization.

Allows the attacker to compromise
the host running the database or
even attack other systems.

Unauthorized
data access

Authentication
bypass

Database modifi-
cation

Escape from a
database

|2, page 378]

large fault may go unnoticed.

The end goal of any injection attack is to execute against
the database SQL statements and/or queries so that the
attack against the database is successful. Figure 2 outlines
the four types of SQL injection attacks: unauthorized data
access, authentication bypass, database modification, and
escape from a database.

One of the challenges to detecting SQL injection attacks
at the database server is that an effective SQL injection is
both semantically and syntactically valid. This means that
some anomaly detection rules, such as those used to catch
SPAM e-mail messages, are ineffective for SQL, which is a
structured programming language and not a natural lan-
guage with loose grammar. A detection system is likely to
have either a high rate of false positives or false negatives,
hindering its effectiveness. The structured nature of the SQL
language allows some techniques to be used which would not
work in SPAM detection systems.

5.1 Parameterization Attack

Most applications prepare an SQL statement for submis-
sion to the database by taking a preexisting SQL template
and inserting user-supplied text such as user names and
search terms. If the application does not perform adequate
validity checking on the user-supplied input and if the SQL
template contains certain exploitable locations, then an SQL
injection attack is possible. When an attack relies on placing
strategically crafted input into an SQL template, the attack
is classified as a parameterization attack.

Some queries are easier to exploit than others. Those that
expect a numerical parameter or that place a parameter at
the end of the query, a so-called dangling parameter, are
easier to transform to an alternate valid query.

5.1.1 Dangling Parameters

A dangling parameter is a first-order replacement in an
SQL query. There is generally nothing following the final
parameter, which leaves room for the syntax to be modified.

One example query rewrite happens when an application

Figure 3: An example parse tree for a second-order
string replacement. The expression is always true.

WHERE
LastName = i
i < OR

FirstName = 'Bob’|

inserts a string into a search term at the end of a query.
Even though the template expects a name to be provided, a
clever string is provided to totally rewrite the query:

SELECT * FROM Directory WHERE LastName LIKE ’${NAME}’;

can be transformed to:

SELECT * FROM Directory WHERE LastName LIKE ’frank’
OR 1=1
UNION SELECT user, password
FROM mysql.user WHERE ’q’=’q’ OR "

This modified statement will fetch a full listing of the
MySQL user table, including passwords, if the privileges are
sufficient. While this query will likely fail, most attackers
will try it as there are applications with full permissions.

5.1.2 Second-Order Replacement

Consider the example of a second-order string replacement
in figure 3. The name provided by the user is applied to both
the FirstName and LastName constraints:

SELECT * FROM Listing WHERE
LastName=’${NAME}’ OR LastName=’${NAME}’

is transformed, by setting ${NAME} = “Bob’ OR 1=17, to:

SELECT * FROM Listing WHERE
LastName=’Bob’ OR 1=1 OR LastName=’Bob’ OR 1=1

which will return every record in the Listing table since the
constraint always evaluates to true. However, in other cases
a second-order replacement is harder to exploit than a first-
order replacement. This presents challenges for those craft-
ing clever input.

5.1.3 Unquoted Numerical Parameters

The most dangerous location for exploit is a SQL state-
ment with an unchecked value being placed in an unquoted
parameter template. Consider the following query intended
to update a number in a particular financial record:

UPDATE Financial_Records
SET Salary = ${NEW_SALARY}
WHERE Name = ’${NAME}’

The problem with this SQL template is that there are no
quotes around the ${NEW_SALARY} parameter. SQL does
not require quotes around numerical values but, unless the

application enforces the restriction on the input data, there
is potential for this parameter to be exploited. Without
quotes present in the template, any string literal other than
a number will be part of the SQL statement and will not
be treated as a literal by the DBMS, resulting in a direct
injection [7]. This does not mean that a value other than
a number will be placed into Salary by the SET statement,
but that the absence of quotes allows the query itself to be
changed. Even when the application framework automati-
cally escapes string literals, such as magic quotes do in PHP,
a direct injection is possible when quotes are not present.

5.2 Batch Query Engines

Some SQL servers allow multiple queries to be bundled up
into a single transaction, and some application frameworks
support batch queries where each query is separated by a
deliminator character, such as a semicolon.

Consider again the first dangling parameter example:

SELECT * FROM Directory WHERE LastName LIKE ’${NAME}’;

When a batch query engine is in use, it is possible to trans-
form the string into more than one query. For example, it is
possible to transform the above template into:

SELECT * FROM Directory WHERE Last_Name LIKE ’’;
UPDATE Directory SET Phone=’555-1212’
WHERE First_Name=’Frank’;

Depending on the batch engine being used, the first query
will fail, but the subsequent SQL statements are used to
change a piece of data in the relational database. The first
query runs and returns a null search result but the second
query executes and changes a field within the database.

6. APROPOSAL FOR AN ANOMALY
DETECTION MODEL

One class of anomaly detection models, such as the one
used in the anomalous payload-based network intrusion de-
tection system [10], breaks the data being analyzed into a
number of buckets. The relative frequencies of these buck-
ets are then used to quantify the observation and compare it
against historically observed normal data. While the relative
frequencies of certain bytes, or groups of bytes, are useful
when analyzing network traffic, it is important to consider
the structure of the queries in the observed SQL traffic.

An anomaly model for SQL must take into account spe-
cific characteristics of the database query language. See fig-
ure 4 for an overview of some fundamental characteristics.
The nature of SQL allows the model to focus on a finite
number of collectible data points, group them according to
type, compute the relative frequencies of each group, and
then compare them against the historically observed normal
traffic. Since each application will likely generate a unique
normal profile, the IDS must keep track of each application’s
SQL traffic separately.

6.1 Unexpected Constructs

Particular applications tend to generate very consistent
SQL traffic with only a subset of the database features in
use. Therefore, it is useful to give a weighted score to a
query in which particular SQL features, that are not in the
normal profile, are used. Constructs of interest include:

Figure 4: Fundamental SQL characteristics which
can be observed by an application layer IDS sensor.

SQL Functionality Ezample
Extract data from the | SELECT * FROM
SELECT database. user_table;
Combine the results | SELECT first, last
UNION of several SELECT | FROM customers
queries together, | WHERE city =
removing duplicate | 'NYC’ UNION SE-
records. LECT first, last
FROM prospects
WHERE city="NYC’;
Put new data into the | INSERT INTO
INSERT | jatabase table, add a | item_features VAL-
new row to the table. | UES (130012,4);
Change the records in | UPDATE items SET
UPDATE the database. description = ’New
Honeypot’® WHERE
item_id = 15002;
Delete specific records | DELETE FROM
DELETE | 41 a table. alerts WHERE de-
vicetypeid = 13 AND
alarmid NOT IN
(1,2,5);
Create new data struc- | CREATE TABLE
CREATE | ¢ 1es (such as tables) | high AS SELECT
within the database. * FROM events
WHERE name = 2;
Remove the table from | DROP TABLE
DROP the database. user_table;
Modify the data- | ALTER TABLE
ALTER base table by adding | user_table ADD
columns. address varchar(30);
Defines the fields | SELECT * FROM
WHERE | ¢, pe processed by | user_table WHERE
SELECT, INSERT, | username = ’anton’;
DELETE, and other
commands.
Facility used to do | SELECT * FROM
LIKE approximate matching | user_table =~ WHERE
within the WHERE | username LIKE
clause; the %’ indi- | ’anton%’;
cates a wild card.
Binary logic compar- | SELECT * FROM
AND, ison operators used, | user_table username =
OR, for example, within | ’anton’ AND password
NOT WHERE clauses. = ’correcto’;
Used to specify the in- | INSERT INTO
VALUES | erted or changed val- | user_table (username,
ues for the INSERT | password) VALUES
and UPDATE com- | (’anton’, ’correcto’);
mands.
|2, page 375]

Sub-queries

Literals as left-hand-values or right-hand-values
Previously unused SQL keywords

Unquoted values when quoted values are expected
Unexpected character set or encoding

6.2 General Statistics

Other particulars of interest to the statical model include:
e Query length and encoding
e Keyword usage
e Right-hand/Left-hand bias for constraint qualifiers
e Data types used for particular parameters

6.3 Query Groups, Anomaly Estimation, and
Deviations

SQL statements must be grouped with similar statements
to which each can be compared with the anomaly model.
A simple grouping could be done on the type of query, SE-
LECT, INSERT, UPDATE, etc. The grouping should take
into account the length of the query, the type of data, and
which tables and columns are being accessed.

For each SQL statement being observed, the algorithm
will use the collected data-points to compute a distance,
such as a Mahalanobis distance [10], from the normal profile
for a particular query group. Each data point distance will
be multiplied by the corresponding danger weight, through
a table lookup, and a summation calculated for all of the
weighted points. This sum should be compared to a reason-
able threshold, which may also be learned from the model.

A query that deviates from the normal profile above the
threshold would be flagged and be handled accordingly. The
anomalous queries could be treated to more computationally
intense screening, stopped all together, or allowed to pass
through to the database server.

7. RELATED WORK

7.1 Static Analysis of Application SQL

A technique that uses a model-based approach to detect il-
legal queries before they are executed on the database. In its
static part, the technique uses program analysis to automat-
ically build a model of the legitimate queries that could be
generated by the application. In its dynamic part, runtime
monitoring is used to inspect the dynamically-generated
queries and check them against the statically-built model [4].

7.2 SQL Randomization

A protection mechanism that applies the concept of
instruction-set randomization to SQL, creating instances of
the language that are unpredictable to the attacker |1].

8. CONCLUSIONS & FUTURE RESEARCH
8.1 Contribution of this Paper

SQL injection potentially affects every database on every
platform. Attacks can be used to gain information disclo-
sure, to bypass authentication mechanisms, to modify the
database, and to execute arbitrary code, in certain instances,
on the database server itself. While several techniques are
available to mitigate the risk of SQL injection attacks, we
propose that an additional measure of protection be added.

An application layer intrusion detection system should take
the form of a proxy server and employ an anomaly detection
model based on specific characteristics of SQL and the trans-
action history for a particular user and application. Being
designed with domain knowledge specific to RDBMSs, this
new IDS should be more accurate than a generic network
anomaly detection system.

8.2 Proposed Future Research

More research on this topic should focus on building an
experimental application layer IDS sensor to collect the data
necessary to see how this model performs in practice and to
find ways it can be improved. It may be possible to improve
the accuracy of the sensor by moving it into the DBMS in
order to examine the internal representation after the query
optimizer has processed each SQL statement.

9. ACKNOWLEDGMENTS

Special thanks to Shamkant B. Navathe, professor at Geor-
gia Tech, who provided valuable advice throughout the writ-
ing process. This undergraduate research project would have
not come so far without his help. Thanks also to Harrison
Caudill, Jonathan Cullifer, and Eric McCorkle for feedback.

10. REFERENCES

[1] S. Boyd and A. Keromytis. Sqlrand: Preventing sql
injection attacks, 2004.

[2] A. C. Cyrus Peikari. Security Warrior. O'Reilly
Media, Inc., Sabastopol, CA, 2004.

[3] D. D. W. L. Guofei Gu, Prahlad Fogla and B. Skoric.
Measuring intrusion detection capability: An
information-theoretic approach. In Proceedings of
ACM Symposium on InformAction, Computer and
Communications Security (ASIACCS’06).

[4] W. Halfond and A. Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In
Proceedings of the IEEE and ACM International
Conference on Automated Software Engineering (ASE
2005), pages 174-183, Long Beach, CA, USA, Nov
2005.

[5] G. Hoglund and G. McGraw. FEzploiting Software:
How to Break Code. Addison-Wesley Professional,
Boston, MA, 2004.

[6] O. Maor and A. Shulman. Sql injection signatures
evasion: An overview of why sql injection signature
protection is just not enough. http://www.imperva.
com/application_defense_center/white_papers/
sql_injection_signatures_evasion.html, 2004.

[7] K. Spett. Sql injection: Are your web applications
vulnerable? http://www.spidynamics.com/
whitepapers/WhitepaperSQLInjection.pdf, 2002.

[8] L. Spitzner. Honeytokens: The other honeypot.
http://www.securityfocus.com/infocus/1713, July
2003.

[9] J. Viega and G. McGraw. Building Secure Software:
How to Avoid Security Problems the Right Way.
Addison-Wesley Professional, Boston, MA, 2001.

[10] K. Wang and S. J. Stolfo. Anomalous payload-based
network intrusion detection. In RAID, pages 203-222,
2004.

http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://www.imperva.com/application_defense_center/white_papers/sql_injection_signatures_evasion.html
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf
http://www.securityfocus.com/infocus/1713

	Introduction
	Motivation
	SQL Injection
	Intrusion Detection

	Problems with Database Access Control At Large
	Reliability, Security and Trust in Database Systems
	Database Security Methods
	Signatures
	Honey Tokens
	Anomaly Models

	Forms of SQL Injection Attacks
	Parameterization Attack
	Dangling Parameters
	Second-Order Replacement
	Unquoted Numerical Parameters

	Batch Query Engines

	A Proposal for an Anomaly Detection Model
	Unexpected Constructs
	General Statistics
	Query Groups, Anomaly Estimation, and Deviations

	Related Work
	Static Analysis of Application SQL
	SQL Randomization

	Conclusions & Future Research
	Contribution of this Paper
	Proposed Future Research

	Acknowledgments
	References -9pt

